Modeling of dark current in mid-IR QWIPs

Fabrizio Castellano¹, Rita C. Iotti¹ and Fausto Rossi¹
Jerome Faist²
Emmanuel Luhillier^{3,4}, Vincent Berger³

¹Dipartimento di Fisica, Politecnico di Torino, Italy ²Quantum optoelectronics group, ETH Zurich, Switzerland ³Université Paris Diderot - Paris 7, France ⁴ONERA-DOTA, France

QSIP 2009

Modeling of dark current in mid-IR QWIPs

Motivations

- device dark current is the limiting factor for cold-background detection
- I(V) features below 20 K still to be explained

Outline

- Device/Experiment
- Modeling
- Results

Experiment

- Thermionic regime: T > 40 K
- Tunneling regime:T < 20 K

- \bullet GaAs/Al_{0.15}Ga_{0.85}As QWIP
- 7.3 nm well 45 nm barrier
- 40 periods
- $\bullet~\Delta E = 85.5~\mathrm{meV}/20.6~\mathrm{THz}/14.5~\mu\mathrm{m}$

Tunneling current regimes

Low temperature current contributions

At low temperature current is due to electrons in the ground state.

Low temperature current contributions

At low temperature current is due to electrons in the ground state.

Wannier-Stark picture

- Seq. tunneling between ground states (low field)
- Direct tunneling into continuum (high field)

Low temperature current contributions

At low temperature current is due to electrons in the ground state.

Wannier-Stark picture

- Seq. tunneling between ground states (low field)
- Direct tunneling into continuum (high field)

Miniband picture

- Miniband transport (low field)
- Interminiband Zener transitions (high field)

Select appropriate description for each current component

- Select appropriate description for each current component
- Field assisted emission dominates at high fields
 - → Wannier-Stark picture

- Select appropriate description for each current component
- Field assisted emission dominates at high fields
 → Wannier-Stark picture
- Tunneling between ground states dominates at low fields \rightarrow miniband picture

- Select appropriate description for each current component
- Field assisted emission dominates at high fields
 → Wannier-Stark picture
- Tunneling between ground states dominates at low fields → miniband picture
- Sum everything

$$j = \sum_{
u} j_{
u} + j_{
u
ightarrow c}$$

Sinusoidal miniband approximation

$$E(\mathbf{k}) = E_0 + \frac{\epsilon}{2}(1 - \cos(k_z L)) + \frac{\hbar^2 k_{\parallel}^2}{2m}$$
 $\mathbf{v}(\mathbf{k}) = \frac{1}{\hbar} \nabla E$

Sinusoidal miniband approximation

$$E(\mathbf{k}) = E_0 + \frac{\epsilon}{2}(1 - \cos(k_z L)) + \frac{\hbar^2 k_{\parallel}^2}{2m}$$
 $\mathbf{v}(\mathbf{k}) = \frac{1}{\hbar} \nabla E$

Distribution function $f(\mathbf{k})$ and Boltzmann eq.

$$\begin{split} \frac{\partial f}{\partial t} &= \frac{q}{\hbar} \mathbf{F} \cdot \nabla_{\mathbf{k}} f + S_{\tau}[f] \\ f(\mathbf{k}; \mathbf{F}) &= \left[1 + \exp\left(\frac{E(\mathbf{k} + \Delta \mathbf{k}(\mathbf{F}, \tau)) - E_F}{k_B T}\right) \right]^{-1} \end{split}$$

Sinusoidal miniband approximation

$$E(\mathbf{k}) = E_0 + \frac{\epsilon}{2}(1 - \cos(k_z L)) + \frac{\hbar^2 k_{\parallel}^2}{2m}$$

$$\mathbf{v}(\mathbf{k}) = \frac{1}{\hbar} \nabla E$$

Distribution function $f(\mathbf{k})$ and Boltzmann eq.

$$\frac{\partial f}{\partial t} = \frac{q}{\hbar} \mathbf{F} \cdot \nabla_{\mathbf{k}} f + S_{\tau}[f]$$
$$f(\mathbf{k}; \mathbf{F}) = \left[1 + \exp\left(\frac{E(\mathbf{k} + \Delta \mathbf{k}(\mathbf{F}, \tau)) - E_F}{k_B T}\right) \right]^{-1}$$

Current densty

$$\mathbf{j} = qN_{3D} \frac{\int \mathbf{v}(\mathbf{k}) f(\mathbf{k}; \mathbf{F}) d\mathbf{k}}{\int f(\mathbf{k}) d\mathbf{k}}$$

Low bias: results

Very low coupling allows analitycal solution

$$j_z(F) = N_{3D} \frac{F\tau}{\left(\frac{\hbar}{eL_z}\right)^2 + (F\tau)^2} \frac{\epsilon^2}{8E_F}$$
$$j_{sat} = \frac{eN_{3D}L_z\epsilon^2}{16\hbar F_F}$$

- Good fit up to 10kV/cm
- ullet Plateau current independent of au

High bias: transmission model

Switch to Wannier-Stark picture

High bias: transmission model

- Switch to Wannier-Stark picture
- Transmission through trapezoidal barriers

High bias: transmission model

- Switch to Wannier-Stark picture
- Transmission through trapezoidal barriers
- Ground-continuum tunneling current

$$j_{0 \to c} = eN_{2D}\frac{E}{h}\mathcal{T}(F)$$
.

Transmission coefficient

- \bullet $\mathcal{T}(F)$ by modified transfer matrix
- Number of periods depends on field
- Important at low fields

Low temperature simulation: $\tau = 20$ fs, 2 periods

High temperature

Same model with thermal activation allows to simulate high temperature transport

$$j_{\nu \to c} = eN_{2D} \frac{k_B T}{E_F} \exp\left(-\frac{E_{\nu} - E_F - \eta eFL_w}{k_B T}\right) \frac{E_{\nu}}{h} \mathcal{T}_{\nu}(F).$$

High temperature

Same model with thermal activation allows to simulate high temperature transport

$$j_{\nu \to c} = eN_{2D} \frac{k_B T}{E_F} \exp\left(-\frac{E_{\nu} - E_F - \eta eFL_w}{k_B T}\right) \frac{E_{\nu}}{h} T_{\nu}(F).$$

Full simulation

- Error within fluctuations due Al fraction and thickness uncertainty
- Unwanted resonances at high field due to lack of dissipation in the transmission model
- No free parameters in tunneling regime

Plateau current check

Additional devices

- Al fraction: 26%
- well width: 5 nm
- barrier width: 15, 20, 25 nm

No free parameters

$$j_{sat} = \frac{eN_{3D}L_z\epsilon^2}{16\hbar E_F}$$

Summary

- Model for dark-current in QWIPs
- Agreement over large bias and temperature range
- Low temperature predictions without free parameters

Open issues and perspectives

- Doping dependence
- Link with microscopic models (See E. Luhillier at 3:50 pm)

Summary

- Model for dark-current in QWIPs
- Agreement over large bias and temperature range
- Low temperature predictions without free parameters

Open issues and perspectives

- Doping dependence
- Link with microscopic models (See E. Luhillier at 3:50 pm)

Thank you for your attention!